
 

 2111, Page 1 
 

15
th

 International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 

 

 
Experimental Investigation of Vapor Injected Compression for Cold Climate Heat Pumps 

 

Christian K. BACH
1
*, Bernhard VETSCH

2
,  

Eckhard A. GROLL
1
, James E. BRAUN

1
, W. Travis HORTON

1
 

 
1
Purdue University Herrick Laboratories 

140 S. Martin Jischke Dr. 

West Lafayette, IN 47907, USA 

bachc@purdue.edu 

groll@purdue.edu, jbraun@purdue.edu, wthorton@purdue.edu 

 
2
Interstate University of Applied Sciences of Technology, NTB 

Institute for Energy Systems 

Werdenbergstrasse 4 

9471 Buchs, Switzerland 

bernhard.vetsch@ntb.ch 

 

* Corresponding Author 

 

 

 

ABSTRACT 
 

Building heating requirements increase with decreasing ambient temperature, while the coefficient of performance 

of air-source heat pumps (ASHPs) shows the opposite trend. Additionally, heat pump heating capacity decreases 

with ambient temperature, which leads to the utilization of inefficient electric auxiliary heat below the design point. 

Increasing the capacity and coefficient of performance (COP) at lower ambient temperatures is important for 

improving the market penetration of heat pumps in climates having significant operating time at low ambient 

temperature. Simulation studies previously showed that compressor vapor injection leads to an increase of COP 

under exactly those conditions. Furthermore, reduced capacity degradation towards smaller ambient temperatures 

was predicted. 

 

The work presented in this paper shows experimental results obtained from a commercially available 5-ton heat 

pump that was retrofitted with a two-port vapor injected scroll compressor. The injection ports within the two 

compression pathways are located in the fixed scroll with different distance from the suction chamber. The vapor for 

the two injection pressure levels was generated using two vapor separators in a cascade configuration. This 

configuration made it necessary to not only control the superheat but also the liquid levels in the separators and 

subcooling of the refrigerant leaving the condenser. 

 

Baseline performance data of the heat pump without vapor injection was obtained and compared with that for the 

vapor injection and other system configurations. For the baseline, the injection lines to the compression pockets 

were plugged within the fixed scroll to reduce dead volume and re-expansion losses. Also, the vapor-separator 

section was shut off and bypassed. In the second step, the plugs were removed and a staged expansion process was 

performed using the separator section. The generated vapor from each separator was injected into the respective 

compressor port causing an intercooling effect on the compression process. 

 

With identical compressor speed, a 28% improvement in capacity was achieved at the 8.33°C design point, when 

compared to the baseline without vapor injection. When the baseline and vapor injected system capacity were 

matched by adjusting compressor speed, the COP increased by up to 6% at -8.33°C. Results of a bin-type analysis of 

the experimental results predicts an improvement in the heating seasonal performance factor (HSPF) of 6% for 

Minneapolis and nearly 7% for ANSI/AHRI climate region 5. Further details on this can be found in the companion 

paper (Bach et al. 2014b), published in this conference. 
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1. INTRODUCTION AND MOTIVATION 
 

Bertsch and Groll (2005) summarized the main problems in applying heat pumps in northern cold climates: 1) The 

adverse trend of increasing building heating demand and decreasing heat pump heating capacity with decreasing 

ambient temperature. 2) Increasing compressor discharge temperatures with decreasing ambient temperatures due to 

increasing pressure ratio, which ultimately makes it necessary to shut down the heat pump to prevent lubrication oil 

degradation. 3) Signification reduction of system efficiency at high pressure ratios. 4) On/off cycling of the heat 

pump at moderate ambient temperatures when the unit is sized for low ambient temperatures, which reduces the 

lifespan of the compressor, the overall system efficiency, and the comfort level of inhabitants.  

 

Some approaches to overcome low ambient temperature limitations include vapor, liquid, and oil injection into the 

suction or during the compression process and the usage of cascade systems.  Several system configurations were 

investigated by Bertsch and Groll (2005) with the three most promising identified as 2-stage approaches using 

conventional compressors: the cascade cycle, the intercooler cycle, and the economizer cycle. The economizer cycle 

was chosen for the development of a prototype heat pump having a 17 kW heating capacity at -10°C ambient 

temperature. This breadboard system featured two single speed scroll type compressors, which are connected in 

series. Refrigerant vapor from the economizer
1
 is mixed with the discharged refrigerant from the low stage 

compressor. At medium ambient temperatures, only the high stage cycle operates to achieve better part load 

efficiency. Caskey et al. (2012) continued the study of the economizer cycle and designed two prototype set-ups 

(18.34 kW heating capacity/-20°C ambient temperature), which were tested in a field demonstration. A variable 

speed high stage compressor was used to better match the part load requirements. Their simulation study predicted 

30% primary energy savings if the existing natural gas furnace were replaced with the cold climate heat pump. In 

the actual field test, the system controls were continually improved which meant that the heat pump did not operate 

at its optimum efficiency. A seasonal COP of 2.3 was predicted based on analysis of the field test data. This 

corresponds to a 19% savings of primary energy compared to the natural gas furnace (Hutzel and Groll, 2013). 

 

With the new concept of vapor injected scroll compressors, a less expensive approach to establish a cold climate 

residential heat pump is possible. Bell et al. (2013) performed a theoretical analysis of the vapor injected scroll 

compressor to be used in a cold climate heat pump. His simulation study predicted an efficiency improvement of 

10% and 16% at -20°C evaporation temperature by using one or two injection lines, respectively. 

 

One of the key components of a cold climate heat pump is the multi-circuit evaporator that is located in the outdoor 

unit. Even small deviations from its ideal operation can cause signification degradation of capacity and efficiency of 

the unit. Air side maldistribution, refrigerant side maldistribution, evaporator fouling, and frost build-up lead to 

those penalties. Bach (2014) summarizes various studies on the influence of refrigerant and air flow maldistribution 

on the heat pump’s performance. The study by Payne and Domanski (2002), for example, is cited that demonstrates 

a capacity reduction of up to 41% for non-uniform air flow tests of evaporators. However, by controlling the 

refrigerant flow in each circuit to provide the original exit superheat, the capacity could be recovered to within 2% 

of the initial value. Kærn et al. (2011a) investigated air flow maldistribution and found a decrease in COP of up to 

43%. Consistent with previous work, Kærn et al. (2011b) confirms that most of the penalty in capacity and COP can 

be recovered if the individual exit superheat is forced to a uniform value. Kim et al. (2008) introduced an approach 

to control the individual circuit superheat, consisting of a primary expansion valve which provides most of the 

pressure drop, and individual circuit flow balancing valves for superheat control. He found that this hybrid control 

method was more effective if the flow balancing valves were located upstream of the evaporator. This approach has 

been applied by Bach (2014) to four different vapor compression systems, showing small COP and capacity 

improvements for conditions without airside maldistribution. If airside maldistribution was applied in the form of 

evaporator frosting (heat pump (HP), walk in refrigeration system (WCRS)) or airside maldistribution (blockage for 

HP, cold climate HP, and WCRS and temperature and flow maldistribution for airside economized rooftop air 

conditioning unit), COP and capacity improvements in excess of 10% were observed for some operating conditions. 

In fact, in order to find a compromise between the benefit of the individual circuit control and its costs, a reduced 

hybrid control method was developed. This approach pairs two neighboring circuits using a secondary distributor 

with one balancing valve located between that distributor and the primary distributor.  A short summary of its layout 

can be found in Bach et al. (2014a). 

                                                           
1
 The economizer in that setup was used to further subcool the refrigerant. 
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This paper presents findings from the experimental cold climate heat pump set-up shown in Bach (2014) that has the 

ability to run either in single stage, flash gas bypass, or two-stage vapor injection mode combined with the reduced 

hybrid control scheme.  

 

2. EXPERIMENTAL SET-UP 
 

2.1 Operations modes and key components 
The heat pump is a split air-to-air system with an outdoor unit and indoor unit. The indoor unit contains the AC-

mode expansion device, the heat exchanger, and the indoor blower.  The outdoor unit contains the outdoor heat 

exchanger and blower motor, the compressor, vapor separators, and control valves necessary to facilitate the 

different operating modes of the system.  Only heating mode operation was considered during the testing.  The 

compressor is operated on a variable speed drive, allowing a closer match between heating requirement of the 

building and the capacity of the heat pump.  For single stage operating mode, figure 1 (B0), the vapor separators are 

bypassed by an electronic expansion valve (EXV).  The refrigerant is evaporated and superheated in the outdoor 

heat exchanger, then passes through the 4-way valve and accumulator (acc) to the compressor suction.  The 

refrigerant is compressed by the compressor and passes through discharge muffler (M) and the 4-way valve to the 

indoor heat exchanger, where it is condensed and subcooled.  The subcooled refrigerant travels through the bypass 

valve in the thermostatic expansion valve (TXV) and the filter drier back to the EXV. In flash gas bypass operating 

mode (B0 FGB), figure 2, the flash gas from the expansion process is taken off using the low pressure (LP) 

separator before the evaporator and bypassed through a control valve directly to the accumulator while the liquid 

refrigerant is drained to the evaporator. 

 

 
Figure 1: Single stage operating mode (B0) 

 

 
Figure 2: Flash gas bypass operating mode (B0 FGB) 

The injection ports of the compressor are internally plugged for both the B0 and B0 FGB configurations.  This was 

done to reduce re-expansion losses.  These plugs are removed for the vapor injected configuration (B1), Figure 3. In 

that configuration, the expansion process is split up into three stages, where the flash gas from the high pressure and 

intermediate pressure expansion is injected into the injection ports of the compressor.  For the vapor injected mode 

with hybrid control, as indicated in figure 4, the last expansion process is done using 5 balancing valves, where each 

valve controls the superheat of a neighboring circuit pair of the outdoor heat exchanger. This approach, named 

reduced hybrid control, reduces the number of balancing valves when compared to hybrid control as introduced by 

Kim et al. (2008) by 50% for an even number of circuits. The tested heat pump additionally used 2-step balancing 

valves, which are expected to be cheaper to produce than electronic expansion valves. 
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Figure 3: Vapor injection operating mode (B1) 

 
Figure 4: Vapor injection operating mode (B1H) 

 

 

2.2 Instrumentation 
Refrigerant inlet and outlet temperatures were measured for all major components. Air inlet and outlet temperatures 

were measured using thermocouple grids for both indoor and outdoor units. Inlet dew point was measured for the 

indoor and outdoor units with the outlet dew point measured at the outdoor unit. Chilled mirror sensors were used 

for all dew point temperature measurements.  The relative humidities at the air inlet of the indoor and outdoor units 

were measured as a backup in case of sensor failure. The air-side flow rate of the indoor unit was measured using an 

ASHRAE nozzle box that follows ASHRAE 41.2 (ASHRAE, 1987). Table 1 and 2 list the measurement uncertainty 

of the employed measurement devices in terms of absolute uncertainty and relative uncertainty with respect to the 

measured value. Figure 5 shows the system level instrumentation. 

 

Table 1: Measurement device uncertainty for 

temperature and humidity measurements
2
 

 

Measurement Device Absolute 

Uncertainty 

Thermocouples (TC) using 

internal cold junction 

1.12 K 

TC with external cold junction 

for increased accuracy 

0.56 K 

RTD 0.15 K 

Dew point 0.2 K 

Relative humidity 3% 

 

 

Table 2: Measurement device uncertainty for  

pressure, flowrate and power measurements 
 

Measurement Device Absolute 

Uncertainty 

Relative 

Unc. 

Note: next 3 items are gage pressure transducers 

High pressure 

(S1, high pressure VI port,  

comp. discharge) 

9.0 kPa  

Low pressure 

(distributor and circuit inlets, 

comp. suction) 

2.2 kPa  

Medium pressure 

(remaining locations) 

4.5 kPa  

Differential pressure 

(indoor unit static pressure) 

2.5 Pa  

Differential pressure 

(flow measurement nozzle 

pressure drop) 

6.2 Pa  

Atmospheric pressure 0.12 kPa  

Refrigerant mass flow rate  0.5 % 

Power, fan  0.2 % 

Power, compressor 26.3 W  

Power, VSD 5 W 0.2 % 
 

 
                                                           
2
 By applying external cold junction devices the thermocouple accuracy used for discharge temperature, as well as 

condenser inlet and outlet temperature has been improved. 
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Figure 5: System instrumentation 

 

2.3 Controls and Observation 
The different operating modes lead to different methods for controlling the system. For the B0 configuration, 

superheat was the only controlled variable; subcooling was between 4 and 5 K for clean coil operating conditions. 

For the B0 configuration with flash gas bypass, subcooling was additionally controlled. For the vapor injected 

configurations, liquid levels in the two separators were controlled to allow the charge in the system to balance. 

Superheat for the vapor injected system was either controlled by a single valve or, in case of the hybrid control 

scheme, by the balancing valves. The balancing valves were used to equalize the superheats and to move the overall 

superheat to the target value. The setpoint for both superheat and subcooling was 5 K for all system configurations. 

It was necessary to increase the superheat setpoint for some operating conditions to maintain stable operation of the 

system. 
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3. METHODOLOGY 
 

3.1 Test plan 
Testing was conducted at test conditions similar to AHRI 210/240 (AHRI, 2008). Table 3 shows the resulting test 

plan. The following modifications were made: 

 Relative humidity in the outdoor room was reduced for ambient temperatures that can lead to frost build up. 

This step was taken to reduce the penalty caused by frost built up – which is larger for the vapor injected 

system due to non-optimal system control. 

 Tests with coil blockage of two different levels were conducted to simulate the effects of frost build up and/or 

fouling. 

 An additional test (HX) was added to investigate low temperature performance of the heat pump. 

 Since vapor injection leads to an increase in capacity, additional clean coil tests H2, H3, and HX were added 

where the compressor speed was adjusted to match the baseline systems capacity. 

The COP and capacity results for the blocked coil tests are not part of this paper but can be found in Bach et 

al.(2014 a). 

 

Table 3: Test plan 

Compressor

Speed
Airside blockage

Dry Bulb Wet Bulb Dew Point Dry Bulb Wet Bulb Dew Point [Hz] -/light/severe

H1 - low - clean 21.1 ≤15.6≤12.068.33 6.11 3.74 40 -

H1 - low - light block 21.1 ≤15.6≤12.068.33 6.11 3.74 40 light

H1 - low - severe block 21.1 ≤15.6≤12.068.33 6.11 3.74 40 severe

H2 - mid - clean 21.1 ≤15.6≤12.061.67 min min 55 -

H2 - mid - light block 21.1 ≤15.6≤12.061.67 min min 55 light

H2 - mid - severe block 21.1 ≤15.6≤12.061.67 min min 55 severe

H3 - full - clean 21.1 ≤15.6≤12.06-8.33 min min 70 -

H3 - full - light block 21.1 ≤15.6≤12.06-8.33 min min 70 light

H3 - full - severe block 21.1 ≤15.6≤12.06-8.33 min min 70 severe

HX - full - clean 21.1 ≤15.6≤12.06-17.78 min min 70 -

HX - full - light block 21.1 ≤15.6≤12.06-17.78 min min 70 light

HX - full - severe block 21.1 ≤15.6≤12.06-17.78 min min 70 severe

Notes:

> Tests to be repeated with each different system configuration. 

> H2, H3, and HX clean coil test additionaly with reduced compressor speed to match baseline capacity.

> H1 test condition adopted from AHRI 210/240; H2, and H3 modified humidity compared to AHRI 210/240 (2008)

Air Entering Outdoor Unit

Temperature [°C]Test description

Air Entering Indoor Unit

Temperature [°C]

 
 

 

3.2 Test Procedure 
Test data was taken under steady state operating conditions, e.g. no or only small trend in discharge temperature and 

all other temperatures and pressures. The start of the steady state period was judged during system operation, after 

the start of that period, at least 30 minutes of steady state data was taken.  This resulted in 30 minutes or more of 

steady state data after the final data selection. The average absolute mismatch between useful airside and refrigerant 

side capacity was 2.2 %, with the maximum occurring value being 3.7%. Reported values in this paper are based on 

the refrigerant side, due to the better accuracy of these measurements. 

 

3.3 Uncertainty Analysis 
Uncertainty analysis was based on the method outlined in Taylor and Kuyatt (1994). The following contributions to 

the uncertainty were considered: 

 Distribution of fluctuations of the measurement values in terms of the one sided 95% confidence interval of the 

one sided t-distribution. 

 Sensor accuracy and propagation of sensor accuracy through calculated properties. 

 Uncertainty of the property calculation routines (REFPROP, Lemmon et al., 2007) was not considered. 

 

The resulting uncertainty is shown in the figures of this document. 
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4. EXPERIMENTAL RESULTS 
 

4.1 Comparison to Baseline 
Figure 6 and 7 show the improvement in COP and capacity relative to the baseline system (B0). Vapor injection 

leads to significant improvement in capacity, with about 11% at high ambient temperature and 28% at -8.3°C 

ambient temperature. For the “fix capacity” case, compressor speed was reduced to match the baseline B0 capacity – 

with exception of the H1 test, where no further reduction of compressor speed was possible. The COP improvements 

are smaller – with identical compressor speed than for the baseline, up to 3.7% improvement is possible. If capacity 

is matched, more than 6% COP improvement is possible. COP improvement tends to increase towards lower 

ambient temperatures. One of the reasons for this is that the performance improvement due to vapor injection 

becomes more important than the re-expansion losses at the injection ports since the cooling effect of the injected 

vapor becomes more significant. The flash gas bypass only leads to a COP (3%) and capacity (7%) improvement for 

the H2 condition, but did not lead to any benefits for the other operating conditions.  
 

 
Figure 6: Relative capacity improvement, B1 vs. B0 

 
Figure 7: Relative COP improvement B1 vs. B0 

 

One benefit of the vapor injection is that the capacity degrades less towards lower ambient temperature if the same 

compressor speed is used. Figure 8 shows that the capacity for the vapor injected system increases by nearly 7% as 

ambient temperature decreases from the H1 to the H3 test while compressor speed is increased from 40 to 70 Hz. 

For the same conditions, the B0 system capacity decreases by 2%. The differences in COP are less pronounced. The 

COP for all tested system configurations – even at the lowest ambient temperature – exceeds 2. COP decreases from 

the highest ambient temperature to the lowest ambient temperature. For the B0 system, the COP for HX conditions 

is 70% of the COP for H1 conditions. For the vapor injected system, a relative COP of 72% of H1 conditions is 

maintained under HX conditions. Application of the hybrid control lead to additional improvement of COP and 

capacity over the vapor injected system with standard distributor.  
 

 
Figure 8: Refrigerant side heating capacity 

 
Figure 9: Refrigerant side COP 
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4.2 Issues Observed During Testing 
An initially conducted test series used the original ANSI/AHRI 210/240 (AHRI, 2008) test conditions. This led to 

frost build up, which was – due to the higher capacity - more pronounced for the vapor injected system than for the 

B0 baseline system. The target outdoor room humidity was reduced to mitigate this issue. However, it was found 

that for the test with the larger humidity, the performance indices (COP, capacity) during the period of their maxima 

were very similar to the ones observed for the steady state tests with lower humidity. 

 

While the prototype 2-step valves for the hybrid control worked well for H1 and H2 conditions, they found their 

limit at H3 conditions. Figure 10 shows that it was no longer possible to equalize exit superheats if severe coil 

blockage was applied. Figure 11 shows that this was caused by saturation of the valves for the circuit pairs 1&2, and 

3&4 in fully open high flowrate position. Note that the valve for circuits 9&10 was saturated in the closed, low 

flowrate position – even for the case without coil blockage. This suggests the existence of refrigerant maldistribution 

at the distributor. For HX conditions, it was necessary to close the refrigerant liquid bypass (BP2) from the low 

pressure separator and use the primary expansion valve (PXV) after that separator to allow for superheat control. 

 

 
Figure 10: Individual circuit exit superheat (H3, B1H) 

 
Figure 11: Balancing valve opening degree (H3, B1H) 

 

 

4.4 Heating Seasonal Performance 
Heating seasonal performance was calculated using a modified version of the ANSI/AHRI 210/240 HSPF (AHRI, 

2008) calculation method. The results of this can be found in the companion paper, Bach et al. (2014b).  

 

5. CONCLUSIONS 
 

In this paper, an experimental test-set up of a cold climate heat pump that is able to operate in single stage, flash gas 

bypass, and two-stage vapor injection mode was introduced. Due to an interchangeable evaporator coil equipped 

with additional valves, the system can also run with the reduced hybrid evaporator flow control scheme. 

 

 Compared to the baseline single stage configuration, the flash gas bypass mode increased COP and capacity by 

up to 3% and 7%, respectively. 

 Running the vapor injected system at compressor speeds identical with the corresponding baseline tests 

resulted in 11% at 8.3°C (H1 test) to 28% at -8.3°C (H3 test) higher heating capacities. 

 When the compressor speed of the vapor injected system was reduced to match the heating capacity provided 

in the baseline tests the COP improvement was about 6% at -8.3°C. 

 The absolute value of the COP was higher than 2.0 for all system configurations and tested ambient air 

temperatures. On average, the COP decreases from approx. 3.1 at 8.3°C to approx. 2.2 at -17.8°C. 

 Applying the reduced hybrid control scheme showed limitations of the employed 2-step balancing valves, For 

some operating conditions, saturation in fully open or fully closed position was reached.  

 

Future work should include improving the vapor injected compressor: In the current configuration, the injection 

ports did not include check valves. This might be the cause for the smaller performance improvement than predicted 
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by the simulations. On the hybrid control side, the opening area in the two positions of the two-step flow control 

valves should be modified to prevent saturation in open and closed position. On the evaporator side, a larger fin 

pitch and tube diameter should be used for cold climate heat pumps to reduce the effects of frost-build up and 

refrigerant side pressure drop. 
 

NOMENCLATURE 

 
Δ Difference (kW) or (-) 

X Value placeholder  (kW) or (-) 

 

Subscript 

baseline baseline single stage configuration 

i system configuration index 

j climate zone index 

norm normalized 
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